SURFACE VP VS. DEEP VP ANAPHOR

RESULTS

![Surface VP vs Deep VP Anaphor](image)

DEEP VP VS. DEEP VP ANAPHOR

ONSET OF "didI"

![Onset of "didI"](image)

Onset of "tou"

![Onset of "tou"](image)

Onset of "verb/didIt"

![Onset of "verb/didIt"](image)

Onset of "tou"

![Onset of "tou"](image)

PLAUSIBILITY MANIPULATION

![Plausibility Manipulation](image)

DISCUSSION

Plausibility Effects

- A standard NO/YES task was used in response to implausible second subjects.
- Interestingly, this effect was observed on the second subject (e.g., "Larry") even though the noun only became implausible when combined with the information from the verb (e.g., "shuffled").

Deep VP vs. Deep VP Anaphor

- The waveform for NP and VP anaphors differed considerably, so the contrasting effects of this factor should be avoided in future investigations of the processing of deep and surface anaphors.

Deep vs. Surface VP Anaphor

- The waveform for the processing of Deep and Surface VP anaphors were strikingly similar overall.

- **The processing** of the word "it" in the Deep VP anaphor was observable in a posterior component peaking approximately 100 ms after the onset of the noun. In addition, while it appeared that the Deep VP anaphor incurred a posterior positivity relative to the Surface, comparison of the waveforms at the word "me" suggested an attenuated effect. Length differences may have simply delayed the rest of the waveform relative to the Surface condition.

- Future studies using visual presentation could dissociate the two possibilities by controlling the timing of the two conditions more closely.

- Regardless, the current study provides no compelling evidence that deep and surface anaphors utilize different processing mechanisms, at least in contexts where both types of anaphors are grammatical.

- **Rather, the results are more consistent with a One-Mechanism Accessibility account.**

REFERENCES

ACKNOWLEDGMENTS

One of the authors of this research was supported by an NSF Graduate Research Fellowship as well as an NSF training grant to UCSD. This research was also supported by the National Institute of Health (R01-DC00494).