The Effects of Anaphor Form and Antecedent Type on Anaphoric Processing

Callahan, S.M.¹, Nicol, J.², Love, T.¹,³, Witzel, J.D.², Swinney, D.¹

¹ University of California, San Diego
² University of Arizona, Tucson
³ San Diego State University

BACKGROUND

The informativity of Anaphors

- Anaphors differ in terms of how much information they provide to help the listener in identifying the antecedent (e.g., Ariel, 1990; 1991; Givón, 1983; Murphy, 1985).

Speakers tend to use more informative anaphors when the antecedent is difficult to identify and less informative anaphors when the antecedent is easy to identify.

Null vs. Overt Anaphors

- Anaphors can be phonologically overt or phonologically null (i.e., unpronounced).
- Null anaphors are less informative than overt anaphors because they provide no information about the antecedent.
- During language processing, detecting a null anaphor is more difficult than detecting an overt anaphor because the presence of a null anaphor must be inferred from the surrounding context (e.g., Callahan, 2008).

Previous ERP Studies of Null Anaphors

- An ERP study (Kaam et al., 2004) of gapfill constructions involving null verb anaphors (e.g., form tool) in the blanks and fill the elephant) found a right anterior positivity between 300 and 500ms post-onset of the word following the null anaphor that was interpreted as reflecting the retrieval of the antecedent.
- Furthermore, an ERP study (Callahan et al., 2007) directly comparing null and overt VP anaphors (e.g., did you do vs. did it do) found a right anterior positivity between 300 and 500ms post-onset of the word following the null anaphor relative to that following the overt VP anaphor (see figure below), suggesting that this retrieval process is more costly for null anaphors.

RESULTS

Frequency of Antecedent

- ANTHETIC REGION (VP1)
- ANAPHOR/FINAL REGION

ANAPHOR/FINAL REGION

- Contrary to a previous study (van Gompel & Majd, 2004) that reported shorter first-fixation and first-pass reading times in the region following an anaphor with a low-frequency antecedent, no frequency effect was observed in the anaphor region or the final region.
- The failure to observe a similar effect may be due to the fact that the relevant regions were much larger in this study than in the previous study. Analyses using smaller regions are currently underway.

ANAPHOR REGION

- Longer first-pass and total reading times were observed for the anaphor region when it contained an overt rather than a null VP anaphor; however, raw reading times for this region are confounded by length differences between the null and overt VP conditions.
- Moreover, once the length confound was removed by performing the same analyses on residual reading times, the same pattern of longer first-pass and total reading times for the Overt VP condition was observed.
- We see this finding to evidence from a separate naturalness rating pre-test that suggested that Overt VP anaphors are slightly less natural than Null VP anaphors (where 1=very natural and 5=very awkward. Null VP Mean: 3.5, SD: .50. Overt VP Mean: 3.7, SD: .2).

Anaphor Form

- Longer first-pass and total reading times were observed for the anaphor region when it contained an overt rather than a null VP anaphor.
- We see this finding to evidence from previous ERP studies that null anaphors are associated with increased processing approximately 300-500ms post-onset of the next word.
- Null anaphors may be associated with increased processing load either because retrieval of the antecedent more costly or because null anaphors must be inferred from the surrounding context.

REFERENCES